MatematicA

Érettségi, felvételi és OKTV feladatok a mobilodon

Relatív gyakoriság

Töltsd le matematica.hu Android appomat, amivel mobil eszközökön még kényelmesebben, pl. hangvezérléssel is hozzáférsz az adatbázisban tárolt feladatokhoz!

Címke: relatív gyakoriság

magyar relatív gyakoriság magyar relative Häufigkeit magyar relative frequency

 Kis feladatok    Nagy feladatok

MatematicA .hu matematica.hu Kecskemét relatív gyakoriság 2011-05-03 | Elrejt

1/4. | | K2011/2/3. | 3p | | HU DE EN FR HR IT SP


Az alábbi táblázat egy nagy divatáru üzletben eladott pólók számát mutatja méretek szerinti bontásban: A pólók mérete Eladott darabszám XS 60 S 125 M 238 L 322 XL 198 XXL 173 a) Mennyi az eladott M-es méretű pólók relatív gyakorisága? b) Melyik az egyes pólók méretéből álló adatsokaság módusza? c) Méretenként hány darabot adnának el ugyanekkora forgalom esetén, ha mindegyik méretből ugyanannyi kelne el?
Az alábbi táblázat egy nagy divatáru üzletben eladott pólók számát mutatja méretek szerinti bontásban: A pólók mérete Eladott darabszám XS 60 S 125 M 238 L 322 XL 198 XXL 173 a) Mennyi az eladott M-es méretű pólók relatív gyakorisága? b) Melyik az egyes pólók méretéből álló adatsokaság módusza? c) Méretenként hány darabot adnának el ugyanekkora forgalom esetén, ha mindegyik méretből ugyanannyi kelne el?
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 309

MatematicA .hu matematica.hu Kecskemét relatív gyakoriság 2014-05-06 | Elrejt

2/4. | | K2014/2/8. | 2p | | HU DE EN FR HR IT SK SP


Egy dolgozat értékelésének eloszlását mutatja a következő táblázat: osztályzat 1 2 3 4 5 gyakoriság 0 2 7 8 3 Határozza meg az egyes osztályzatok előfordulásának relatív gyakoriságát! osztályzat 1 2 3 4 5 relatív gyakoriság
Egy dolgozat értékelésének eloszlását mutatja a következő táblázat: osztályzat 1 2 3 4 5 gyakoriság 0 2 7 8 3 Határozza meg az egyes osztályzatok előfordulásának relatív gyakoriságát! osztályzat 1 2 3 4 5 relatív gyakoriság
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 476

MatematicA .hu matematica.hu Kecskemét relatív gyakoriság 2015-05-05 | Elrejt

3/4. | | K2015/2/16. | 17p | | HU DE EN FR HR IT SK SP


A népszámlálások során felmérik a Magyarországon élő családok számát és jellemzőit. Mindegyik népszámlálásnál minden egyes családról feljegyzik, hogy mennyi a család- ban az eltartott gyermekek száma, majd az így kapott adatokat összesítik. Az 1990-es és a 2011-es adatok összesítésének eredményét az alábbi táblázat mutatja. (Például 2011-ben az összes család 5%-ában volt 3 az eltartott gyermekek száma.) A családok megoszlása Az eltartott gyermekek száma 1990 2011 0 48% 52% 1 26% 25% 2 21% 16% 3 4% 5% 4 vagy több 1% 2% Azt tudjuk még, hogy a családok száma 1990-ben 2 896 ezer, 2011-ben 2 713 ezer volt. a) Számítsa ki, hogy 1990-ről 2011-re hány százalékkal változott azoknak a csalá- doknak a száma, amelyekben nem volt eltartott gyermek! b) Számítsa ki, hogy átlagosan hány eltartott gyermek jutott egy családra 2011-ben! (A 4 vagy több eltartott gyermeket nevelő családokban a gyermekek számát te- kintse 4-nek.) A népszámlálások során a háztartások számát is felmérték. A háztartások száma 1990-ről 2001-re 0,7%-kal csökkent, majd 2001-ről 2011-re 6,3%-kal nőtt, és így 2011-ben 4 106 ezer lett. c) Mennyi volt a háztartások száma ezerre kerekítve 1990-ben? Az egyszemélyes háztartások száma 1990-ben 946 ezer volt, majd 2011-re ez a szám 1 317 ezerre nőtt. Szeretnénk ezeket az adatokat egy plakáton két olyan körlappal ábrázolni, amelyek területe az adatok nagyságával egyenesen arányos. Az 1990-es év adatát egy 4,5 cm suga- rú körlappal jelenítjük meg. d) Mekkora legyen a 2011-es adatot ábrázoló körlap sugara?
A népszámlálások során felmérik a Magyarországon élő családok számát és jellemzőit. Mindegyik népszámlálásnál minden egyes családról feljegyzik, hogy mennyi a család- ban az eltartott gyermekek száma, majd az így kapott adatokat összesítik. Az 1990-es és a 2011-es adatok összesítésének eredményét az alábbi táblázat mutatja. (Például 2011-ben az összes család 5%-ában volt 3 az eltartott gyermekek száma.) A családok megoszlása Az eltartott gyermekek száma 1990 2011 0 48% 52% 1 26% 25% 2 21% 16% 3 4% 5% 4 vagy több 1% 2% Azt tudjuk még, hogy a családok száma 1990-ben 2 896 ezer, 2011-ben 2 713 ezer volt. a) Számítsa ki, hogy 1990-ről 2011-re hány százalékkal változott azoknak a csalá- doknak a száma, amelyekben nem volt eltartott gyermek! b) Számítsa ki, hogy átlagosan hány eltartott gyermek jutott egy családra 2011-ben! (A 4 vagy több eltartott gyermeket nevelő családokban a gyermekek számát te- kintse 4-nek.) A népszámlálások során a háztartások számát is felmérték. A háztartások száma 1990-ről 2001-re 0,7%-kal csökkent, majd 2001-ről 2011-re 6,3%-kal nőtt, és így 2011-ben 4 106 ezer lett. c) Mennyi volt a háztartások száma ezerre kerekítve 1990-ben? Az egyszemélyes háztartások száma 1990-ben 946 ezer volt, majd 2011-re ez a szám 1 317 ezerre nőtt. Szeretnénk ezeket az adatokat egy plakáton két olyan körlappal ábrázolni, amelyek területe az adatok nagyságával egyenesen arányos. Az 1990-es év adatát egy 4,5 cm suga- rú körlappal jelenítjük meg. d) Mekkora legyen a 2011-es adatot ábrázoló körlap sugara?
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 538

MatematicA .hu matematica.hu Kecskemét relatív gyakoriság 2016-05-03 | Elrejt

4/4. | | K2016/2/14. | 12p | | HU DE EN FR HR IT SK SP


Ismert, hogy négyféle vércsoport van: 0 (nullás), A, B és AB, továbbá azt is tudjuk, hogy egy adott vércsoporton belül kétféle lehet az Rh-faktor: pozitív vagy negatív. Egy vérellátó központ legutóbbi akciójában 400 véradó vett részt. Mindegyik véradótól egy egység vért vettek le. Az így összegyűjtött 400 egység vérről az alábbi táblázatot készítették: Vércsoport 0 A B AB Rh-pozitív 100 148 51 26 Rh-negatív 25 31 13 6 a) A táblázat alapján számítsa ki az egyes vércsoportok relatív gyakoriságát a 400 elemű mintában, és írja az eredmények két tizedesjegyre kerekített értékét az alábbi táblázat megfelelő mezőibe! Vércsoport 0 A B AB Relatív gyakoriság b) A nullás vércsoportú véradók közül kettőt véletlenszerűen kiválasztva mekkora annak a valószínűsége, hogy egyikük Rh-pozitív, a másikuk Rh-negatív lesz? Válaszát két tizedesjegyre kerekítve adja meg! c) Egy alkalmazott a 400 véradóról kimutatást készített, és ezt az itt látható kördiagramon szemléltette. Mielőtt a diagramot nyilvánosságra hoznák, ellenőrizni kell a rajta szereplő adatokat. Ellenőrizze a kördiagramon szereplő adatokat, és utána töltse ki az alábbi táblázatot! (A táblázat sötétített mezőit már ellenőriztük, azokba ne írjon!) Helyes-e a diagramon megadott érték? (igen-nem) Ha a diagramon megadott érték nem helyes, akkor a helyes érték ennyi Az Rh-pozitív vércsoportúak százalékos aránya Az Rh-negatív vércsoportúak százalékos aránya igen - Az Rh-pozitív vércsoportúakat szemléltető körcikk középponti szöge Az Rh-negatív vércsoportúakat szemléltető körcikk középponti szöge
Ismert, hogy négyféle vércsoport van: 0 (nullás), A, B és AB, továbbá azt is tudjuk, hogy egy adott vércsoporton belül kétféle lehet az Rh-faktor: pozitív vagy negatív. Egy vérellátó központ legutóbbi akciójában 400 véradó vett részt. Mindegyik véradótól egy egység vért vettek le. Az így összegyűjtött 400 egység vérről az alábbi táblázatot készítették: Vércsoport 0 A B AB Rh-pozitív 100 148 51 26 Rh-negatív 25 31 13 6 a) A táblázat alapján számítsa ki az egyes vércsoportok relatív gyakoriságát a 400 elemű mintában, és írja az eredmények két tizedesjegyre kerekített értékét az alábbi táblázat megfelelő mezőibe! Vércsoport 0 A B AB Relatív gyakoriság b) A nullás vércsoportú véradók közül kettőt véletlenszerűen kiválasztva mekkora annak a valószínűsége, hogy egyikük Rh-pozitív, a másikuk Rh-negatív lesz? Válaszát két tizedesjegyre kerekítve adja meg! c) Egy alkalmazott a 400 véradóról kimutatást készített, és ezt az itt látható kördiagramon szemléltette. Mielőtt a diagramot nyilvánosságra hoznák, ellenőrizni kell a rajta szereplő adatokat. Ellenőrizze a kördiagramon szereplő adatokat, és utána töltse ki az alábbi táblázatot! (A táblázat sötétített mezőit már ellenőriztük, azokba ne írjon!) Helyes-e a diagramon megadott érték? (igen-nem) Ha a diagramon megadott érték nem helyes, akkor a helyes érték ennyi Az Rh-pozitív vércsoportúak százalékos aránya Az Rh-negatív vércsoportúak százalékos aránya igen - Az Rh-pozitív vércsoportúakat szemléltető körcikk középponti szöge Az Rh-negatív vércsoportúakat szemléltető körcikk középponti szöge
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 590



A felkészüléshez jó kedvet kíván a szoftver kitalálója, fejlesztője és finanszírozója,

Vántus András va Kecskemét, 20/424-89-36

Köszönettel a sok segítségért Báhner Anettnek, Bényei Annának, Borbély Alíznak, Sárik Szilviának, Vári Noéminek, Víg Dorinának, Virág Lucának és Zalán Péternek.

Letöltés Képernyőképek Sajtó Partnereink Kapcsolat

Magyarország középcímere

HISZEK·EGY·ISTENBEN
HISZEK·EGY·HAZÁBAN
HISZEK·EGY·ISTENI·ÖRÖK·IGAZSÁGBAN
HISZEK·MAGYARORSZÁG·FELTÁMADÁSÁBAN
ÁMEN