MatematicA

Érettségi, felvételi és OKTV feladatok a mobilodon

Emelt szintű érettségi 2014/3

Töltsd le matematica.hu Android appomat, amivel mobil eszközökön még kényelmesebben, pl. hangvezérléssel is hozzáférsz az adatbázisban tárolt feladatokhoz!
Keresés: Minden címke Csak ezen a szinten

Szabályok

hu

1. feladat | E 2014/3/1. | 12p |

Oldja meg a valós számok halmazán az alábbi egyenleteket! a) xxx 22 cossin2sin2 = b) xx lglg 54525 +=
Oldja meg a valós számok halmazán az alábbi egyenleteket! a) xxx 22 cossin2sin2 = b) xx lglg 54525 +=
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (E) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 1490

2. feladat | E 2014/3/2. | 11p |

Egy 2 cm sugarú, 20 cm széles festőhengerrel dolgozva egy fordulattal körülbelül 3 ml festéket viszünk fel a falra. (A festőhenger csúszás nélkül gördül a falon.) a) Elegendő-e 4 liter falfestéket vásárolnunk, ha a szobánkban 40 m2 -nyi falfelületet egy rétegben, egyszer akarunk lefesteni? b) Milyen magasan állna 4 liter falfesték a 16 cm átmérőjű, forgáshenger alakú festé- kes vödörben? Válaszát cm-ben, egészre kerekítve adja meg!
Egy 2 cm sugarú, 20 cm széles festőhengerrel dolgozva egy fordulattal körülbelül 3 ml festéket viszünk fel a falra. (A festőhenger csúszás nélkül gördül a falon.) a) Elegendő-e 4 liter falfestéket vásárolnunk, ha a szobánkban 40 m2 -nyi falfelületet egy rétegben, egyszer akarunk lefesteni? b) Milyen magasan állna 4 liter falfesték a 16 cm átmérőjű, forgáshenger alakú festé- kes vödörben? Válaszát cm-ben, egészre kerekítve adja meg!
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (E) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 1491

3. feladat | E 2014/3/3. | 14p |

Egy kereskedőcég bevételei két forrásból származnak: bolti árusításból és internetes el- adásból. Ebben az évben az internetes árbevétel 70%-a volt a bolti árbevételnek. A cég vezetői arra számítanak, hogy a következő években az internetes eladásokból származó árbevétel évente az előző évi internetes árbevétel 4%-ával nő, a bolti eladásokból szár- mazó árbevétel viszont évente az előző évi bolti árbevétel 2%-ával csökken. a) Számítsa ki, hány év múlva lesz a két forrásból származó árbevétel egyenlő! A cég ügyfélszolgálatának hosszú időszakra vonatkozó adataiból az derült ki, hogy át- lagosan minden nyolcvanadik vásárló tér vissza később valamilyen minőségi kifogással. b) Határozza meg annak a valószínűségét, hogy 100 vásárló közül legfeljebb kettőnek lesz később minőségi kifogása!
Egy kereskedőcég bevételei két forrásból származnak: bolti árusításból és internetes el- adásból. Ebben az évben az internetes árbevétel 70%-a volt a bolti árbevételnek. A cég vezetői arra számítanak, hogy a következő években az internetes eladásokból származó árbevétel évente az előző évi internetes árbevétel 4%-ával nő, a bolti eladásokból szár- mazó árbevétel viszont évente az előző évi bolti árbevétel 2%-ával csökken. a) Számítsa ki, hány év múlva lesz a két forrásból származó árbevétel egyenlő! A cég ügyfélszolgálatának hosszú időszakra vonatkozó adataiból az derült ki, hogy át- lagosan minden nyolcvanadik vásárló tér vissza később valamilyen minőségi kifogással. b) Határozza meg annak a valószínűségét, hogy 100 vásárló közül legfeljebb kettőnek lesz később minőségi kifogása!
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (E) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 1492

4. feladat | E 2014/3/4. | 14p |

Adott a síkbeli derékszögű koordináta-rendszerben az 32 3 xxy = egyenletű görbe. a) Igazolja, hogy ha [3 0]x , akkor 0>y . b) Írja fel a görbe 3 abszcisszájú pontjában húzható érintőjének egyenletét! (abszcissza: első koordináta) c) Számítsa ki annak a síkidomnak a területét, amelyet a görbe első síknegyedbe eső íve és az x tengely fog közre!
Adott a síkbeli derékszögű koordináta-rendszerben az 32 3 xxy = egyenletű görbe. a) Igazolja, hogy ha [3 0]x , akkor 0>y . b) Írja fel a görbe 3 abszcisszájú pontjában húzható érintőjének egyenletét! (abszcissza: első koordináta) c) Számítsa ki annak a síkidomnak a területét, amelyet a görbe első síknegyedbe eső íve és az x tengely fog közre!
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (E) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 1493
Az 5-9. feladatok közül 4-et kell megoldani, 1-et kihagyni.

5. feladat | E 2014/3/5. | 16p |

A tavaszi idény utolsó bajnoki mérkőzésén a Magas Fiúk Kosárlabda Klubjának (MAFKK) teljes csapatából heten léptek pályára. A mérkőzés után az edző elkészítette a hét játékos egyéni statisztikáját. Az alábbi táblázat mutatja a játékosok dobási kísérlete- inek számát és az egyes játékosok dobószázalékát egészre kerekítve. (A dobószázalék megmutatja, hogy a dobási kísérleteknek hány százaléka volt sikeres.) Játékos mezszáma Dobási kísérletek száma Dobószázalék 4 2 50 5 3 0 6 10 60 7 8 25 10 7 43 13 6 33 15 14 57 a) Számítsa ki, hogy mennyi volt a csapat dobószázaléka ezen a mérkőzésen! Az őszi idény kezdete előtt egy hónappal a MAFKK csapatához csatlakozott egy 195 cm magas játékos, így a csapattagok magasságának átlaga a korábbi átlagnál 0,5 cm-rel nagyobb lett. Pár nap múlva egy 202 cm magas játékos is a csapat tagja lett, emiatt a csapattagok magasságának átlaga újabb 1 cm-rel nőtt. b) Hány tagja volt a MAFKK-nak, és mekkora volt a játékosok magasságának átlaga a két új játékos csatlakozása előtt?
A tavaszi idény utolsó bajnoki mérkőzésén a Magas Fiúk Kosárlabda Klubjának (MAFKK) teljes csapatából heten léptek pályára. A mérkőzés után az edző elkészítette a hét játékos egyéni statisztikáját. Az alábbi táblázat mutatja a játékosok dobási kísérlete- inek számát és az egyes játékosok dobószázalékát egészre kerekítve. (A dobószázalék megmutatja, hogy a dobási kísérleteknek hány százaléka volt sikeres.) Játékos mezszáma Dobási kísérletek száma Dobószázalék 4 2 50 5 3 0 6 10 60 7 8 25 10 7 43 13 6 33 15 14 57 a) Számítsa ki, hogy mennyi volt a csapat dobószázaléka ezen a mérkőzésen! Az őszi idény kezdete előtt egy hónappal a MAFKK csapatához csatlakozott egy 195 cm magas játékos, így a csapattagok magasságának átlaga a korábbi átlagnál 0,5 cm-rel nagyobb lett. Pár nap múlva egy 202 cm magas játékos is a csapat tagja lett, emiatt a csapattagok magasságának átlaga újabb 1 cm-rel nőtt. b) Hány tagja volt a MAFKK-nak, és mekkora volt a játékosok magasságának átlaga a két új játékos csatlakozása előtt?
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (E) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 1494

6. feladat | E 2014/3/6. | 16p |

Megadtunk három egyenest, és mindegyiken megadtunk öt-öt pontot az ábra szerint. a) Hány olyan szakasz van, amelynek mindkét végpontja az ábrán megadott 15 pont valamelyike, de a szakasz nem tar- talmaz további pontot a megadott 15 pont közül? Az egyenlő oldalú ABC háromszög 18 egység hosszúságú olda- lait hat-hat egyenlő részre osztottuk, és az ábra szerinti osztó- pontok összekötésével megrajzoltuk a PQR háromszöget. b) Számítsa ki a PQR háromszög területének pontos értékét!
Megadtunk három egyenest, és mindegyiken megadtunk öt-öt pontot az ábra szerint. a) Hány olyan szakasz van, amelynek mindkét végpontja az ábrán megadott 15 pont valamelyike, de a szakasz nem tar- talmaz további pontot a megadott 15 pont közül? Az egyenlő oldalú ABC háromszög 18 egység hosszúságú olda- lait hat-hat egyenlő részre osztottuk, és az ábra szerinti osztó- pontok összekötésével megrajzoltuk a PQR háromszöget. b) Számítsa ki a PQR háromszög területének pontos értékét!
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (E) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 1495

7. feladat | E 2014/3/7. | 16p |

Egy üzemben egyforma, nagyméretű fém- dobozok gyártását tervezik. A téglatest ala- kú doboz hálózatát egy 2 méter × 1 méteres téglalapból vágják ki az ábrán látható mó- don. A kivágott idom felhajtott lapjait az élek mentén összeforrasztják. (A forrasztási eljárás nem jár anyagveszteséggel.) a) Hogyan válasszák meg a doboz méreteit, hogy a térfogata maximális legyen? Válaszát centiméterben, egészre kerekítve adja meg! A dobozokat egy öt karakterből álló kóddal jelölik meg. Minden kódban két számjegy és három nagybetű szerepel úgy, hogy a két számjegy nincs egymás mellett. Mindkét számjegy eleme a {0 1 2 3 4 5 6 7 8 9} halmaznak, a betűket pedig a 26 betűs (angol) ábécéből választják ki (például 7WA3A egy lehetséges kód). b) Hány különböző kód lehetséges?
Egy üzemben egyforma, nagyméretű fém- dobozok gyártását tervezik. A téglatest ala- kú doboz hálózatát egy 2 méter × 1 méteres téglalapból vágják ki az ábrán látható mó- don. A kivágott idom felhajtott lapjait az élek mentén összeforrasztják. (A forrasztási eljárás nem jár anyagveszteséggel.) a) Hogyan válasszák meg a doboz méreteit, hogy a térfogata maximális legyen? Válaszát centiméterben, egészre kerekítve adja meg! A dobozokat egy öt karakterből álló kóddal jelölik meg. Minden kódban két számjegy és három nagybetű szerepel úgy, hogy a két számjegy nincs egymás mellett. Mindkét számjegy eleme a {0  1  2  3  4  5  6  7  8  9} halmaznak, a betűket pedig a 26 betűs (angol) ábécéből választják ki (például 7WA3A egy lehetséges kód). b) Hány különböző kód lehetséges?
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (E) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 1496

8. feladat | E 2014/3/8. | 16p |

a) Határozza meg az alábbi kijelentések logikai értékét (igaz-hamis)! Válaszait indokolja! I. Van olyan hatpontú fagráf, amelynek minden csúcsa páratlan fokszámú. II. Ha egy hétpontú egyszerű gráfnak 15 éle van, akkor a gráf összefüggő. III. Van olyan fagráf, amelyben a csúcsok számának és az élek számának összege páros. Egy hatfős társaság tagjai A, B, C, D, E és F. Mindenkit megkérdeztünk, hogy hány is- merőse van a többiek között (az ismeretség kölcsönös). A válaszként kapott hat termé- szetes szám szorzata 180. Az is kiderült, hogy A-nak legalább annyi ismerőse van, mint B-nek, B-nek legalább annyi ismerőse van, mint C-nek, és így tovább, E-nek legalább annyi ismerőse van, mint F-nek. b) Szemléltesse egy-egy gráffal a lehetséges ismeretségi rendszereket!
a) Határozza meg az alábbi kijelentések logikai értékét (igaz-hamis)! Válaszait indokolja! I. Van olyan hatpontú fagráf, amelynek minden csúcsa páratlan fokszámú. II. Ha egy hétpontú egyszerű gráfnak 15 éle van, akkor a gráf összefüggő. III. Van olyan fagráf, amelyben a csúcsok számának és az élek számának összege páros. Egy hatfős társaság tagjai A, B, C, D, E és F. Mindenkit megkérdeztünk, hogy hány is- merőse van a többiek között (az ismeretség kölcsönös). A válaszként kapott hat termé- szetes szám szorzata 180. Az is kiderült, hogy A-nak legalább annyi ismerőse van, mint B-nek, B-nek legalább annyi ismerőse van, mint C-nek, és így tovább, E-nek legalább annyi ismerőse van, mint F-nek. b) Szemléltesse egy-egy gráffal a lehetséges ismeretségi rendszereket!
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (E) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 1497

9. feladat | E 2014/3/9. | 16p |

Éva egy 7×7-es táblázat bal felső mezőjétől kezdve, balról jobbra haladva, sorról sorra beírta egy számtani sorozat első 49 tagját úgy, hogy a tagok sorrendjét nem változtatta meg. (A sorozat 1. tagja a bal felső sarokba került, a 8. tag a második sor első mezőjébe, a 49. tag pedig a jobb alsó sarokban áll.) a) Mennyi a táblázatba írt 49 szám összege, ha Éva a harmadik sor harmadik mezőjébe a 91-et, az ötö- dik sor ötödik mezőjébe pedig a 11-et írta? Péter a táblázat minden sorából kiválasztja a számtani sorozat egy-egy tagját úgy, hogy a hét kiválasztott szám közül semelyik kettő ne legyen egy oszlopban. b) Igazolja, hogy akárhogyan is választja ki Péter így a számokat, a hét szám összege minden esetben ugyanannyi lesz! c) Határozza meg annak a valószínűségét, hogy a 91 és a 11 is a Péter által kiválasz- tott számok között lesz!
Éva egy 7×7-es táblázat bal felső mezőjétől kezdve, balról jobbra haladva, sorról sorra beírta egy számtani sorozat első 49 tagját úgy, hogy a tagok sorrendjét nem változtatta meg. (A sorozat 1. tagja a bal felső sarokba került, a 8. tag a második sor első mezőjébe, a 49. tag pedig a jobb alsó sarokban áll.) a) Mennyi a táblázatba írt 49 szám összege, ha Éva a harmadik sor harmadik mezőjébe a 91-et, az ötö- dik sor ötödik mezőjébe pedig a 11-et írta? Péter a táblázat minden sorából kiválasztja a számtani sorozat egy-egy tagját úgy, hogy a hét kiválasztott szám közül semelyik kettő ne legyen egy oszlopban. b) Igazolja, hogy akárhogyan is választja ki Péter így a számokat, a hét szám összege minden esetben ugyanannyi lesz! c) Határozza meg annak a valószínűségét, hogy a 91 és a 11 is a Péter által kiválasz- tott számok között lesz!
Javítókulcs erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Címkék A címkéket a matematika (E) feladatokhoz rendelte:
Vántus András
MatekMan videók ▶
👨‍🏫 Megoldás
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 1498
PDF feladatlap PDF javítókulcs

A felkészüléshez jó kedvet kíván a szoftver kitalálója, fejlesztője és finanszírozója,

Vántus András va Kecskemét, 20/424-89-36

Köszönettel a sok segítségért Báhner Anettnek, Bényei Annának, Borbély Alíznak, Sárik Szilviának, Vári Noéminek, Víg Dorinának, Virág Lucának és Zalán Péternek.

Letöltés Képernyőképek Sajtó Partnereink Kapcsolat

Magyarország középcímere

HISZEK·EGY·ISTENBEN
HISZEK·EGY·HAZÁBAN
HISZEK·EGY·ISTENI·ÖRÖK·IGAZSÁGBAN
HISZEK·MAGYARORSZÁG·FELTÁMADÁSÁBAN
ÁMEN