MatematicA

Érettségi, felvételi és OKTV feladatok a mobilodon

Középszintű érettségi 2006/4

Töltsd le matematica.hu Android appomat, amivel mobil eszközökön még kényelmesebben, pl. hangvezérléssel is hozzáférsz az adatbázisban tárolt feladatokhoz!

Keresés: Minden címke Csak ezen a szinten

Szabályok

hu de en fr it sp

Az I. rész (1-12. feladat) megoldására 45 perc áll rendelkezésre.

1. feladat | K 2006/4/1. | 2p | | HU DE EN FR IT SP

Sorolja fel a H halmaz elemeit, ha H = {kétjegyű négyzetszámok}.
Sorolja fel a H halmaz elemeit, ha H = {kétjegyű négyzetszámok}.
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 109

2. feladat | K 2006/4/2. | 2p | | HU DE EN FR IT SP

Adja meg az 5x 3y = 2 egyenletű egyenes és az y tengely metszéspontjának koordinátáit!
Adja meg az 5x  3y = 2 egyenletű egyenes és az y tengely metszéspontjának koordinátáit!
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 110

3. feladat | K 2006/4/3. | 3p | | HU DE EN FR IT SP

Októberben az iskolában hat osztály nevezett be a focibajnokságra egy-egy csapattal. Hány mérkőzést kell lejátszani, ha mindenki mindenkivel játszik, és szerveznek visszavágókat is?
Októberben az iskolában hat osztály nevezett be a focibajnokságra egy-egy csapattal. Hány mérkőzést kell lejátszani, ha mindenki mindenkivel játszik, és szerveznek visszavágókat is?
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 111

4. feladat | K 2006/4/4. | 4p | | HU DE EN FR IT SP

Egy márciusi napon öt alkalommal mérték meg a külső hőmérsékletet. A kapott adatok átlaga 1 °C, mediánja 0 °C. Adjon meg öt ilyen lehetséges hőmérséklet értéket!
Egy márciusi napon öt alkalommal mérték meg a külső hőmérsékletet. A kapott adatok átlaga 1 °C, mediánja 0 °C. Adjon meg öt ilyen lehetséges hőmérséklet értéket!
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 112

5. feladat | K 2006/4/5. | 2p | | HU DE EN FR IT SP

Mekkora az egységsugarú kör 270°-os középponti szögéhez tartozó ívének hossza?
Mekkora az egységsugarú kör 270°-os középponti szögéhez tartozó ívének hossza?
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 113

6. feladat | K 2006/4/6. | 2p | | HU DE EN FR IT SP

Háromjegyű számokat írtunk fel a 0 5 és 7 számjegyekkel. Írja fel ezek közül azokat, amelyek öttel oszthatók, és különböző számjegyekből állnak!
Háromjegyű számokat írtunk fel a 0  5 és 7 számjegyekkel. Írja fel ezek közül azokat, amelyek öttel oszthatók, és különböző számjegyekből állnak!
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 114

7. feladat | K 2006/4/7. | 3p | | HU DE EN FR IT SP

Egy négyzetes oszlop egy csúcsból kiinduló három élének hossza: a, a és b. Fejezze ki ezekkel az adatokkal az ebből a csúcsból kiinduló testátló hosszát!
Egy négyzetes oszlop egy csúcsból kiinduló három élének hossza: a, a és b. Fejezze ki ezekkel az adatokkal az ebből a csúcsból kiinduló testátló hosszát!
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 115

8. feladat | K 2006/4/8. | 2p | | HU DE EN FR IT SP

Egy kétforintos érmét kétszer egymás után feldobunk, és feljegyezzük az eredményt. Háromféle esemény következhet be: A esemény: két fejet dobunk. B esemény: az egyik dobás fej, a másik írás. C esemény: két írást dobunk. Mekkora a B esemény bekövetkezésének valószínűsége?
Egy kétforintos érmét kétszer egymás után feldobunk, és feljegyezzük az eredményt. Háromféle esemény következhet be: A esemény: két fejet dobunk. B esemény: az egyik dobás fej, a másik írás. C esemény: két írást dobunk. Mekkora a B esemény bekövetkezésének valószínűsége?
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 116

9. feladat | K 2006/4/9. | 2p | | HU DE EN FR IT SP

Egy iskola teljes tanulói létszáma 518 fő. Ők alkotják az A halmazt. Az iskola 12. c osztályának 27 tanulója alkotja a B halmazt. Mennyi az A I B halmaz számossága?
Egy iskola teljes tanulói létszáma 518 fő. Ők alkotják az A halmazt. Az iskola 12. c osztályának 27 tanulója alkotja a B halmazt. Mennyi az A I B halmaz számossága?
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 117

10. feladat | K 2006/4/10. | 3p | | HU DE EN FR IT SP

Egy rombusz átlóinak hossza 12 és 20. Számítsa ki az átlóvektorok skalárszorzatát! Válaszát indokolja!
Egy rombusz átlóinak hossza 12 és 20. Számítsa ki az átlóvektorok skalárszorzatát! Válaszát indokolja!
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 118

11. feladat | K 2006/4/11. | 3p | | HU DE EN FR IT SP

Döntse el, hogy az alábbi B állítás igaz vagy hamis! B: Ha egy négyszög két szemközti szöge derékszög, akkor az téglalap. Írja le az állítás megfordítását (C). Igaz vagy hamis a C állítás?
Döntse el, hogy az alábbi B állítás igaz vagy hamis! B: Ha egy négyszög két szemközti szöge derékszög, akkor az téglalap. Írja le az állítás megfordítását (C). Igaz vagy hamis a C állítás?
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 119

12. feladat | K 2006/4/12. | 2p | | HU DE EN FR IT SP

A piacon az egyik zöldségespultnál hétféle gyümölcs kapható. Kati ezekből háromfélét vesz, mindegyikből 1-1 kilót. Hányféle összeállításban választhat Kati? (A választ egyetlen számmal adja meg!)
A piacon az egyik zöldségespultnál hétféle gyümölcs kapható. Kati ezekből háromfélét vesz, mindegyikből 1-1 kilót. Hányféle összeállításban választhat Kati? (A választ egyetlen számmal adja meg!)
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 120

A II. rész (13-18. feladat) megoldására 135 perc áll rendelkezésre.
A II./A blokk (13-15. feladat) mindhárom feladata megoldandó.

13. feladat | K 2006/4/13. | 12p | | HU DE EN FR IT SP

a) Ábrázolja a [-2 4]on értelmezett, x (x 1,5)2 + 0,75 hozzárendeléssel megadott függvényt! b) Állapítsa meg a fenti függvény minimumának helyét és értékét! c) Oldja meg a valós számok halmazán a x 2 3x + 3 =1 2x egyenletet!
a) Ábrázolja a [-2 4]on értelmezett, x (x 1,5)2 + 0,75 hozzárendeléssel megadott függvényt! b) Állapítsa meg a fenti függvény minimumának helyét és értékét! c) Oldja meg a valós számok halmazán a x 2 3x + 3 =1 2x egyenletet!
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 121

14. feladat | K 2006/4/14. | 12p | | HU DE EN FR IT SP

Egy tanulmányi verseny döntőjében 8 tanuló vett részt. Három feladatot kellett megoldaniuk. Az első feladat maximálisan elérhető pontszáma 40, a másodiké 50, a harmadiké 60. A nyolc versenyző feladatonkénti eredményeit tartalmazza az alábbi táblázat: versenyző sorszáma I. II. III. összpontszám teljesítmény százalékos 1. 28 16 40 2. 31 35 44 3. 32 28 56 4. 40 42 49 5. 35 48 52 6. 12 30 28 7. 29 32 45 8. 40 48 41 a) Töltse ki a táblázat hiányzó adatait! A százalékos teljesítményt egészre kerekítve adja meg! Melyik sorszámú versenyző nyerte meg a versenyt, ki lett a második, és ki a harmadik helyezett? b) A nyolc versenyző dolgozata közül véletlenszerűen kiveszünk egyet. Mennyi a valószínűsége annak, hogy 75%-osnál jobb teljesítményű dolgozat került a kezünkbe? c) Egy tanuló betegség miatt nem tudott megjelenni a döntőn. Másnap megkapta, és megoldotta a feladatokat. Eredményét később összehasonlította a nyolc döntős versenyző eredményével. Észrevette, hogy az első feladatot a versenyzők I. feladatra kapott pontszámainak a mediánjára teljesítette (egészre kerekítve), a második feladatot pedig a nyolc versenyző II. feladata pontszámainak a számtani közepére (szintén egészre kerekítve). A III. feladatot 90%-ra teljesítette. Mennyi lett ennek a tanulónak az összpontszáma? Ezzel hányadik helyen végzett volna?
Egy tanulmányi verseny döntőjében 8 tanuló vett részt. Három feladatot kellett megoldaniuk. Az első feladat maximálisan elérhető pontszáma 40, a másodiké 50, a harmadiké 60. A nyolc versenyző feladatonkénti eredményeit tartalmazza az alábbi táblázat: versenyző sorszáma I. II. III. összpontszám teljesítmény százalékos 1. 28 16 40 2. 31 35 44 3. 32 28 56 4. 40 42 49 5. 35 48 52 6. 12 30 28 7. 29 32 45 8. 40 48 41 a) Töltse ki a táblázat hiányzó adatait! A százalékos teljesítményt egészre kerekítve adja meg! Melyik sorszámú versenyző nyerte meg a versenyt, ki lett a második, és ki a harmadik helyezett? b) A nyolc versenyző dolgozata közül véletlenszerűen kiveszünk egyet. Mennyi a valószínűsége annak, hogy 75%-osnál jobb teljesítményű dolgozat került a kezünkbe? c) Egy tanuló betegség miatt nem tudott megjelenni a döntőn. Másnap megkapta, és megoldotta a feladatokat. Eredményét később összehasonlította a nyolc döntős versenyző eredményével. Észrevette, hogy az első feladatot a versenyzők I. feladatra kapott pontszámainak a mediánjára teljesítette (egészre kerekítve), a második feladatot pedig a nyolc versenyző II. feladata pontszámainak a számtani közepére (szintén egészre kerekítve). A III. feladatot 90%-ra teljesítette. Mennyi lett ennek a tanulónak az összpontszáma? Ezzel hányadik helyen végzett volna?
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 122

15. feladat | K 2006/4/15. | 12p | | HU DE EN FR IT SP

Az erdőgazdaságban háromféle fát nevelnek (fenyő, tölgy, platán) három téglalap elrendezésű parcellában. A tölgyfák parcellájában 4-gyel kevesebb sor van, mint a fenyőfákéban, és minden sorban 5-tel kevesebb fa van, mint ahány fa a fenyő parcella egy sorában áll. 360-nal kevesebb tölgyfa van, mint fenyőfa. A platánok telepítésekor a fenyőkéhez viszonyítva a sorok számát 3-mal, az egy sorban lévő fák számát 2-vel növelték. Így 228-cal több platánfát telepítettek, mint fenyőt. a) Hány sor van a fenyők parcellájában? Hány fenyőfa van egy sorban? b) Hány platánfát telepítettek?
Az erdőgazdaságban háromféle fát nevelnek (fenyő, tölgy, platán) három téglalap elrendezésű parcellában. A tölgyfák parcellájában 4-gyel kevesebb sor van, mint a fenyőfákéban, és minden sorban 5-tel kevesebb fa van, mint ahány fa a fenyő parcella egy sorában áll. 360-nal kevesebb tölgyfa van, mint fenyőfa. A platánok telepítésekor a fenyőkéhez viszonyítva a sorok számát 3-mal, az egy sorban lévő fák számát 2-vel növelték. Így 228-cal több platánfát telepítettek, mint fenyőt. a) Hány sor van a fenyők parcellájában? Hány fenyőfa van egy sorban? b) Hány platánfát telepítettek?
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 123
A II./B blokk (16-18. feladat) 3 feladata közül 2-t kell megoldani, 1-et kihagyni.

16. feladat | K 2006/4/16. | 17p | | HU DE EN FR IT SP

Egy útépítő vállalkozás egy munka elkezdésekor az első napon 220 méternyi utat aszfaltoz le. A rákövetkező napon 230 métert, az azutánin 240 métert és így tovább: a munkások létszámát naponta növelve minden következő munkanapon 10 méterrel többet, mint az azt megelőző napon. a) Hány méter utat aszfaltoznak le a 11-edik munkanapon? b) Az összes aszfaltozandó út hossza ebben a munkában 7,1 km. Hányadik munkanapon készülnek el vele? c) Hány méter utat aszfaltoznak le az utolsó munkanapon? d) A 21-edik napon kétszer annyian dolgoztak, mint az első napon. Igaz-e az a feltételezés, hogy a naponta elkészült út hossza egyenesen arányos a munkások létszámával? (Válaszát indokolja!)
Egy útépítő vállalkozás egy munka elkezdésekor az első napon 220 méternyi utat aszfaltoz le. A rákövetkező napon 230 métert, az azutánin 240 métert és így tovább: a munkások létszámát naponta növelve minden következő munkanapon 10 méterrel többet, mint az azt megelőző napon. a) Hány méter utat aszfaltoznak le a 11-edik munkanapon? b) Az összes aszfaltozandó út hossza ebben a munkában 7,1 km. Hányadik munkanapon készülnek el vele? c) Hány méter utat aszfaltoznak le az utolsó munkanapon? d) A 21-edik napon kétszer annyian dolgoztak, mint az első napon. Igaz-e az a feltételezés, hogy a naponta elkészült út hossza egyenesen arányos a munkások létszámával? (Válaszát indokolja!)
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 124

17. feladat | K 2006/4/17. | 17p | | HU DE EN FR IT SP

Egy háromszög egyik oldalának hossza 6 cm. Az ezeken nyugvó két szög 50º és 60º. A háromszög beírt körének középpontját tükröztük a háromszög oldalaira. E három pont a háromszög csúcsaival együtt egy konvex hatszöget alkot. a) Mekkorák a hatszög szögei? b) Számítsa ki a hatszög azon két oldalának hosszát, amely a háromszög 60º-os szögének csúcsából indul! c) Hány négyzetcentiméter a hatszög területe? A b) és a c) kérdésekben a választ egy tizedes pontossággal adja meg!
Egy háromszög egyik oldalának hossza 6 cm. Az ezeken nyugvó két szög 50º és 60º. A háromszög beírt körének középpontját tükröztük a háromszög oldalaira. E három pont a háromszög csúcsaival együtt egy konvex hatszöget alkot. a) Mekkorák a hatszög szögei? b) Számítsa ki a hatszög azon két oldalának hosszát, amely a háromszög 60º-os szögének csúcsából indul! c) Hány négyzetcentiméter a hatszög területe? A b) és a c) kérdésekben a választ egy tizedes pontossággal adja meg!
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 125

18. feladat | K 2006/4/18. | 17p | | HU DE EN FR IT SP

A szociológusok az országok statisztikai adatainak összehasonlításánál használják a következő tapasztalati képletet: 6090 6000 75,5 5 10 G É = . A képletben az É a születéskor várható átlagos élettartam években, G az ország egy főre jutó nemzeti összterméke (a GDP) reálértékben, átszámítva 1980-as dollárra. a) Mennyi volt 2005-ben a várható élettartam abban az országban, amelyben akkor a G nagysága 1090 dollár volt? b) Mennyivel változhat ebben az országban a várható élettartam 2020-ra, ha a gazdasági előrejelzések szerint ekkorra G értéke a 2005-ös szint háromszorosára nő? c) Egy másik országban 2005-ben a születéskor várható átlagos élettartam 68 év. Mekkora volt ekkor ebben az országban a GDP (G) nagysága (reálértékben, átszámítva 1980-as dollárra)?
A szociológusok az országok statisztikai adatainak összehasonlításánál használják a következő tapasztalati képletet: 6090 6000 75,5 5 10 G É  =   . A képletben az É a születéskor várható átlagos élettartam években, G az ország egy főre jutó nemzeti összterméke (a GDP) reálértékben, átszámítva 1980-as dollárra. a) Mennyi volt 2005-ben a várható élettartam abban az országban, amelyben akkor a G nagysága 1090 dollár volt? b) Mennyivel változhat ebben az országban a várható élettartam 2020-ra, ha a gazdasági előrejelzések szerint ekkorra G értéke a 2005-ös szint háromszorosára nő? c) Egy másik országban 2005-ben a születéskor várható átlagos élettartam 68 év. Mekkora volt ekkor ebben az országban a GDP (G) nagysága (reálértékben, átszámítva 1980-as dollárra)?
Respuestas erős kicsinyítőkicsinyítőeredeti képméretnagyítóerős nagyító
Tags A címkéket a matematika (K) feladatokhoz rendelte:
Vántus András
Az appot fejleszti: Vántus András | Kecskemét, 20/424-89-36 | matematica.hu | A feladatok az Oktatási Hivatal honlapjáról származnak. | 126
PDF feladatlap PDF javítókulcs

A felkészüléshez jó kedvet kíván a szoftver kitalálója, fejlesztője és finanszírozója,

Vántus András va Kecskemét, 20/424-89-36

Köszönettel a sok segítségért Báhner Anettnek, Bényei Annának, Borbély Alíznak, Sárik Szilviának, Vári Noéminek, Víg Dorinának, Virág Lucának és Zalán Péternek.

Letöltés Képernyőképek Sajtó Partnereink Kapcsolat

Magyarország középcímere

HISZEK·EGY·ISTENBEN
HISZEK·EGY·HAZÁBAN
HISZEK·EGY·ISTENI·ÖRÖK·IGAZSÁGBAN
HISZEK·MAGYARORSZÁG·FELTÁMADÁSÁBAN
ÁMEN